Anyway the combined inhibition of p38 and p44/42 had the greatest

Anyway the combined inhibition of p38 and p44/42 had the greatest impact on the cytokine secretion and the TLR-APC phenotype. Blocking experiments show that STAT-3 and MAPKs are essential for

Lumacaftor molecular weight the TLR-APC phenotype. To connect the MAPK and STAT-3 findings, we checked STAT-3 activation after MAPK inhibition to find that after blocking p38/p44/42 almost no tyrosine phosphorylation of STAT-3 was detectable (Fig. 9A). This effect could be overcome by the addition of exogenous IL-6 and IL-10 (Fig. 9C). Thus, the TLR-APC phenotype is dependent on the p38 and p44/42 MAPK-induced cytokine production and the resulting STAT-3 activation. An involvement of p38 and p44/42 in the activation of STAT-3 after TLR stimulation

has been observed also from others 46. Xie et al. 7 suggest that MAPK p38 activity might be responsible for the impaired differentiation of monocytes into iDCs after LPS stimulation. One day after LPS stimulation, p38 is activated and p44/42 not. Due to the late time point (d1), the initial and short activation of p44/42 was not seen, thus the link between p44/42 MAPK, IL-6 production and STAT-3 activation was missed. Our results indicate that TLR agonists added at an early time point of iDC differentiation induce a shift from STAT-5 toward STAT-3 activation and thus critical determine the functional phenotype of the APCs. We have shown before, that the addition of LPS during www.selleckchem.com/products/MG132.html the differentiation of murine bone marrow cells into myeloid DCs led to a reduced CD11c expression 5. The effect on CD11c could be traced back to a SOCS-1 dependent blockade of STAT-5 phosphorylation. Additionally, we could show that SOCS-3 is also able to reduce STAT-5 phosphorylation 5. Since TLR-APC upregulate preferentially SOCS3

(data not shown) we suppose that in the human system the block of STAT-5 might be SOCS-3-dependent. Hence, two different mechanisms seem to balance STAT-5/STAT-3 and thus regulate the expression of CD14, PD-L1 and CD1a. During infection, pathogen-derived TLR-agonists might bypass conventional iDCs differentiation and induce PD-L1-expressing tolerogenic APCs in a STAT-3-dependent manner. Studies investigating organs and tissues with close contact to microbial TLR agonists provide O-methylated flavonoid indications of the in vivo relevance of TLR-APC. For example, the liver has to deal with gut-derived portal blood that contains high concentrations of bacterial products. It has been demonstrated that liver DCs have reduced T-cell stimulatory capacities 47, 48. The data of Lunz et al. 49 support these findings. They could show that gut-derived bacterial products induce IL-6/STAT-3 signaling and thereby inhibit the hepatic DC activation/maturation. In summary, we show here that STAT-3 is responsible for the regulation of PD-L1 expression, triggered via IL-6 and IL-10. TLR agonists potently induce STAT-3 activation and thus direct DC differentiation to tolerogenic APCs.

Comments are closed.