Karger AG, Basel”
“As a minimally invasive surgery to treat

Karger AG, Basel”
“As a minimally invasive surgery to treat atrial fibrillation (AF), catheter based ablation uses high radio-frequency energy to eliminate potential sources of abnormal electrical events, especially around the ostia of pulmonary veins (PV). Fusing a patient- specific left atrium (LA) model (including LA chamber, appendage, and PVs) with electro-anatomical maps or overlaying the model onto 2-D real-time fluoroscopic images provides valuable visual guidance during the intervention. In this work,

we present a fully automatic LA segmentation system on nongated C-arm computed tomography (C-arm CT) data, where thin boundaries between the LA and surrounding tissues are often blurred due to the cardiac motion artifacts. To avoid segmentation leakage, the shape prior should be exploited to guide the segmentation. A single holistic PLK inhibitor shape model is often not accurate enough to represent the whole LA shape population selleck compound under anatomical variations, e. g., the left common PVs vs. separate left PVs. Instead, a part based LA model is proposed, which includes the chamber, appendage, four major PVs, and right middle PVs. Each part is a much simpler anatomical structure compared to the holistic one and can be segmented using a model-based approach (except the right middle PVs). After segmenting the LA parts, the gaps and overlaps among the parts are resolved and

segmentation of the ostia region is further refined. As a common anatomical variation, some patients may contain extra DMXAA mouse right middle PVs, which are segmented using a graph cuts algorithm under the constraints from the already extracted major right PVs. Our approach is computationally efficient, taking about 2.6 s to process a volume with 256 x 256 x 245 voxels. Experiments on 687 C-arm CT datasets demonstrate its robustness and state-of-the-art segmentation accuracy.”
“Robotic technology has been used in cardiovascular medicine since the late 1990s. Interventional cardiology, electrophysiology,

endovascular surgery, minimally invasive cardiac surgery, and laparoscopic vascular surgery are all fields of application. Robotic devices enable endoscopic reconstructive surgery in narrow spaces and fast, very precise placement of catheters and devices in catheter-based interventions. In all robotic systems, the operator manipulates the robotic arms from a control station or console. In the field of cardiac surgery, mitral valve repair, CABG surgery, atrial septal defect repair, and myxoma resection can be achieved using robotic technology. Furthermore, vascular surgeons can perform a variety of robotically assisted operations to treat aortic, visceral, and peripheral artery disease. In electrophysiology, ablation procedures for atrial fibrillation can be carried out with robotic support. In the past few years, robotically assisted percutaneous coronary intervention and abdominal aortic endovascular surgery techniques have been developed.

Comments are closed.