Therefore, these proteins might represent potential biomarker candidates of bile tolerance in L. plantarum and should be further studied, especially the ones with unknown functions (protein of unknown function lp_2652, spot 31; putative alkaline shock proteins 1 and 2, spots 3 and 2 respectively). Particular interest was in differentially expressed proteins with a reported putative involvement, not specifically in bile tolerance, but in the overall BOADS stress tolerance, since the deleterious effects of bile not only include a detergent action, but also low-pH, oxidative
and osmotic stresses [27]. This led to the identification of 15 proteins likely to be implicated in bile tolerance of the selected strains. Two of these proteins (GuaA and ribosomal protein S30EA) have previously been negatively correlated to constitutive acid [35] and bile [14] tolerance, respectively, suggesting LY3023414 concentration they could impart bacterial sensitivity to theses stress factors. Interestingly, they were not detected (ribosomal protein S30EA) or naturally underexpressed (GuaA) in the resistant strain. On the other hand, the 13 remaining proteins have been linked to BOADS stress resistance in previous VS-4718 mw studies. Ten of them were overexpressed in the resistant or intermediate strains, while only one of them displayed higher expression levels
in the bile sensitive strain. These results showed that the natural protein diversity observed among L. plantarum strains cultured in standard conditions can reflect their ability to tolerate bile. The more resistant a strain is to bile, the
more it naturally expresses proteins that can help in the bile resistance process, but also the less it produces proteins that may impart sensitivity to this stress. These Teicoplanin proteins could therefore constitute an inherent and characteristic proteomic profile that is indicative of bile tolerance. To OICR-9429 supplier confirm the putative involvement of the 15 proteins of interest in the bile tolerance process and get an overview on how bile salts affect their levels of expression, proteomic analysis of strains response to bile exposure was performed. Thirteen proteins appeared to be directly implicated in bile stress adaptation, since their expression was significantly affected by exposure to bile salt (p < 0.05). Five of them (ClpP, Dps, GroEL, Hsp1, and Hsp3) are general stress-response proteins involved in repair and protection of proteins and DNA. They were up-regulated in response to bile challenge, which is in accordance with previous findings [14, 16, 36–38]. This set of proteins intervenes in numerous stress-management response systems, suggesting they have unspecific contributions to bile stress tolerance, which may result in multifaceted stress-dependent mechanisms of action, as this was recently reviewed for Dps [39].