This is an interesting finding in light of the study by Mason et

This is an interesting finding in light of the study by Mason et al [50] who monitored gene expression by nontypeable H. influenzae in the middle ear of chinchillas.The gene that encodes urease accessory protein, ureH, was induced 3.9 fold in bacterial cells in the middle ear compared to baseline.These two genes, ureC and ureH are part of the urease operon (ureA, ureB, ureC, ureE, ureF, ureG, ureH) and

were among check details the most PARP inhibitor review highly up regulated in the two studies involving two different conditions simulating human infection- the chinchilla middle ear and pooled human sputum.Urease catalyzes the hydrolysis of urea to produce CO2 and ammonia.The enzyme plays a role in acid tolerance and is a virulence factor in other bacteria including Helicobacter pylori, Actinobacillus pleuropneumoniae, Yersinia

enterocolitica and Morganella morganii [51–55].We speculate selleck compound that ureasemay function as a virulence factor for nontypeable H. influenzae by facilitating survival and growth in the relatively acid environment of the airways and middle ear. Adherence The HMW1A protein is one of the major adhesins of H. influenzae, mediating adherence to respiratory epithelial cells [56, 57].Indeed, HMW1 is one of the surface proteins that is a prominent target of human antibodies following infection caused by H. influenzae [58, 59].The HMW1A adhesin was upregulated in sputum along with HMW1B which is an OMP85-like protein that functions specifically to facilitate secretion of the HMW1A adhesin.This result is consistent with the concept that adherence to respiratory epithelial cellsis critical in order for H. influenzae to colonize and infect the airways. Phosphoryl choline and lipooligosaccharide Selleckchem Docetaxel Lipooligosaccharide is an abundant

surface antigen that is involved in adherence, persistence and pathogenesis of H. influenzae infection.The licD gene encodes the enzyme phosphoryl transferease that adds phosphoryl choline to the lipooligosaccharide molecule.The licD gene product was upregulated 4.736 fold in sputum-grown compared to media grown bacteria (Additional File 3).This gene is part of the lic-1 protein operon (licA, licB, licC, licD) involved in lipooligosaccharide synthesis.In the study of gene expression by Mason et al [50], licC was 2.3 fold induced in the chinchilla middle ear.Herbert et al [60] identified licC as an essential gene in survival of H. influenzae type b in a model of systemic infection using signature tagged mutagenesis.The observation that the lic operon was identified in 3 independent model systems (pooled human sputum, chinchilla middle ear, infant rat) suggests that the lipooligosaccharide molecule, in particular addition of phosphoryl choline to lipooligosaccharide is important in pathogenesis.

Comments are closed.