CrossRef 67 Cole J, Wang Q, Cardenas E,

Fish J, Chai B,

CrossRef 67. Cole J, Wang Q, Cardenas E,

Fish J, Chai B, Farris R, Kulam-Syed-Mohideen A, McGarrell D, Marsh T, Garrity G: The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 2009,37(1):D141-D145.PubMedCrossRef 68. Parks DH, Beiko RG: Identifying biologically relevant differences between metagenomic communities. Bioinformatics 2010,26(6):715–721.PubMedCrossRef Competing interests The authors declare that they have no competing interests. Authors’ contributions DGW and NS equally contributed to this work by conceiving, designing and coordinating the study, by carrying out sampling and molecular biology investigations, by leading the development of the PyroTRF-ID bioinformatics methodology, by analyzing all collected data, and by drafting the manuscript. DGW additionally conceived the tables and the figures. LS was responsible for the optimization and validation of PyroTRF-ID https://www.selleckchem.com/products/nvp-bsk805.html and wrote the underlying codes. GL coded the initial bioinformatics procedure. JM and PR participated in the design of the study. JR coordinated the development of PyroTRF-ID at the Bioinformatics and Biostatistics Core Facility. CH led the project and gave the initial idea of reconstructing

T-RFLP profiles from pyrosequencing data. DGW and NS wrote the manuscript, with additional contributions of JM, PR, and CH. All authors read and approved the click here final manuscript.”
“Background Viruses in the genus Alphavirus belong to the group IV Togaviridae family and include nearly 30 virus species [1]. Alphaviruses are able to infect humans and various vertebrates via arthropods, such as mosquitoes. The 11–12 kb Alphavirus genome is a single-stranded positive during sense RNA flanked by a 5’ terminal cap and 3’ poly-A tail, and composed of four non-structural proteins genes (nsP1 to nsP4) and five structural proteins gene (C (nucleocapsid),

E3, E2, 6 K, and E1 proteins) [2]. Getah virus (GETV) is a mosquito-borne enveloped RNA virus belonging to the Semliki Forest virus (SFV) complex in the genus Alphavirus[1]. To date, 10 strains of GETV have been isolated in China: M1, HB0234, HB0215-3, YN0540, YN0542, SH05-6, SH05-15–17 and RG7112 GS10-2 [3]. GETV has been shown to cause illnesses in humans and livestock animals and antibodies to GETV have been detected in many animal species worldwide [4–6]. The identification of novel virus species is important for the identification and characterization of disease. However, present research methods are mostly applicable for known viruses but few methods exist to characterize unknown viruses. Current molecular biological techniques for the identification of new virus species are troublesome since some viruses do not replicate in vitro but some may cause a cytopathic effect. Furthermore, specific techniques that require sequence identification are not applicable.

Comments are closed.